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Geomembrane Lifetime Prediction:  Unexposed and Exposed Conditions 
 

1.0  Introduction 

 Without any hesitation the most frequently asked question we have had over the past 

thirty years’ is “how long will a particular geomembrane last”.*  The two-part answer to the 

question, largely depends on whether the geomembrane is covered in a timely manner or left 

exposed to the site-specific environment.  Before starting, however, recognize that the answer to 

either covered or exposed geomembrane lifetime prediction is neither easy, nor quick, to obtain.  

Further complicating the answer is the fact that all geomembranes are formulated materials 

consisting of (at the minimum), (i) the resin from which the name derives, (ii) carbon black or 

colorants, (iii) short-term processing stabilizers, and (iv) long-term antioxidants.  If the 

formulation changes (particularly the additives), the predicted lifetime will also change.  See 

Table 1 for the most common types of geomembranes and their approximate formulations. 

 
Table 1 - Types of commonly used geomembranes and their approximate formulations  

(based on weight percentage) 
 

Type Resin Plasticizer Fillers Carbon Black Additives 
HDPE 95-98 0 0 2-3 0.25-1 
LLDPE 94-96 0 0 2-3 0.25-3 
fPP 85-98 0 0-13 2-4 0.25-2 
PVC 50-70 25-35 0-10 2-5 2-5 
CSPE 40-60 0 40-50 5-10 5-15 
EPDM 25-30 0 20-40 20-40 1-5 
HDPE  = high density polyethylene PVC = polyvinyl chloride (plasticized) 
LLDPE = linear low density polyethylene CSPE = chlorsulfonated polyethylene 
fPP = flexible polypropylene EPDM = ethylene propylene diene terpolymer 

                                                 
* More recently, the same question has arisen but focused on geotextiles, geogrids, geopipe, turf reinforcement mats, 
fibers of GCLs, etc.  This White Paper, however, is focused completely on geomembranes due to the tremendous 
time and expense of providing such information for all types of geosynthetics. 
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 The possible variations being obvious, one must also address the degradation 

mechanisms which might occur.  They are as follows accompanied by some generalized 

commentary. 

 Ultraviolet Light - This occurs only when the geosynthetic is exposed; it will be the focus 

of the second part of this communication. 

 Oxidation - This occurs in all polymers and is the major mechanism in polyolefins 

(polyethylene and polypropylene) under all conditions. 

 Ozone - This occurs in all polymers that are exposed to the environment.  The site-

specific environment is critical in this regard. 

 Hydrolysis - This is the primary mechanism in polyesters and polyamides. 

 Chemical - Can occur in all polymers and can vary from water (least aggressive) to 

organic solvents (most aggressive). 

 Radioactivity - This is not a factor unless the geomembrane is exposed to radioactive 

materials of sufficiently high intensity to cause chain scission, e.g., high level radioactive 

waste materials. 

 Biological - This is generally not a factor unless biologically sensitive additives (such as 

low molecular weight plasticizers) are included in the formulation. 

 Stress State – This is a complicating factor which is site-specific and should be 

appropriately modeled in the incubation process but, for long-term testing, is very 

difficult and expensive to acheive. 

 Temperature - Clearly, the higher the temperature the more rapid the degradation of all of 

the above mechanisms; temperature is critical to lifetime and furthermore is the key to 
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time-temperature-superposition which is the basis of the laboratory incubation methods 

which will be followed. 

 

2.0  Lifetime Prediction:  Unexposed Conditions 

Lifetime prediction studies at GRI began at Drexel University under U. S. EPA contract 

from 1991 to 1997 and was continued under GSI consortium funding until ca. 2002.  Focus to 

date has been on HDPE geomembranes placed beneath solid waste landfills due to its common 

use in this particular challenging application.  Incubation of the coupons has been in landfill 

simulation cells (see Figure 1) maintained at 85, 75, 65 and 55C.  The specific conditions within 

these cells are oxidation beneath, chemical (water) from above, and the equivalent of 50 m of 

solid waste mobilizing compressive stress.  Results have been forthcoming over the years insofar 

as three distinct lifetime stages; see Figure 2. 

Stage A - Antioxidant Depletion Time 

Stage B - Induction Time to the Onset of Degradation 

Stage C - Time to Reach 50% Degradation (i.e., the Halflife) 

2.1  Stage A - Antioxidant Depletion Time 

 The dual purposes of antioxidants are to (i) prevent polymer degradation during 

processing, and (ii) prevent oxidation reactions from taking place during Stage A of service life, 

respectively.  Obviously, there can only be a given amount of antioxidants in any formulation.  

Once the antioxidants are depleted, additional oxygen diffusing into the geomembrane will begin 

to attack the polymer chains, leading to subsequent stages as shown in Figure 2.  The duration of 

the antioxidant depletion stage depends on both the type and amount of the various antioxidants, 

i.e., the precise formulation. 
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Figure 1.  Incubation schematic and photograph of multiple cells maintained at various 
constant temperatures. 
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Figure 2.  Three individual stages in the aging of most geomembranes. 

 

 The depletion of antioxidants is the consequence of two processes:  (i) chemical reactions 

with the oxygen diffusing into the geomembrane, and (ii) physical loss of antioxidants from the 

geomembrane.  The chemical process involves two main functions; the scavenging of free 

radicals converting them into stable molecules, and the reaction with unstable hydroperoxide 

(ROOH) forming a more stable substance.  Regarding physical loss, the process involves the 

distribution of antioxidants in the geomembrane and their volatility and extractability to the site-

specific environment.  

 Hence, the rate of depletion of antioxidants is related to the type and amount of 

antioxidants, the service temperature, and the nature of the site-specific environment.  See Hsuan 

and Koerner (1998) for additional details. 

2.2  Stage B - Induction Time to Onset of Degradation 

 In a pure polyolefin resin, i.e., one without carbon black and antioxidants, oxidation 

occurs extremely slowly at the beginning, often at an immeasurable rate.  Eventually, oxidation 

occurs more rapidly.  The reaction eventually decelerates and once again becomes very slow.  
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This progression is illustrated by the S-shaped curve of Figure 3(a).  The initial portion of the 

curve (before measurable degradation takes place) is called the induction period (or induction 

time) of the polymer.  In the induction period, the polymer reacts with oxygen forming 

hydroperoxide (ROOH), as indicated in Equations (1)-(3).  However, the amount of ROOH in 

this stage is very small and the hydroperoxide does not further decompose into other free radicals 

which inhibits the onset of the acceleration stage. 

 In a stabilized polymer such as one with antioxidants, the accelerated oxidation stage 

takes an even longer time to be reached.  The antioxidants create an additional depletion time 

stage prior to the onset of the induction time, as shown in Figure 3(b). 
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Figure 3.  Curves illustrating various stages of oxidation. 
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 RH  R  + H   (1)  

(aided by energy or catalyst residues in the polymer) 

 R  + O2  ROO  (2) 

 ROO  + RH  ROOH + R  (3) 

In the above, RH represents the polyethylene polymer chains; and the symbol “” represents free 

radicals, which are highly reactive molecules.   

2.3 Stage C - Time to Reach 50% Degradation (Halflife) 

 As oxidation continues, additional ROOH molecules are being formed.  Once the 

concentration of ROOH reaches a critical level, decomposition of ROOH begins, leading to a 

substantial increase in the amount of free radicals, as indicated in Equations (4) to (6).  The 

additional free radicals rapidly attack other polymer chains, resulting in an accelerated chain 

reaction, signifying the end of the induction period, Rapopport and Zaikov (1986).  This 

indicates that the concentration of ROOH has a critical control on the duration of the induction 

period. 

 ROOH  RO  OH  (aided by energy) (4) 

 RO  + RH  ROH + R  (5) 

 OH  + RH  H2O + R     (6) 

A series of oxidation reactions produces a substantial amount of free radical polymer chains 

(R), called alkyl radicals, which can proceed to further reactions leading to either cross-linking 

or chain scission in the polymer.  As the degradation of polymer continues, the physical and 

mechanical properties of the polymer start to change.  The most noticeable change in physical 

properties is the melt index, since it relates to the molecular weight of the polymer.  As for 

mechanical properties, both tensile break stress (strength) and break strain (elongation) decrease.  
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Ultimately, the degradation becomes so severe that all tensile properties start to change (tear, 

puncture, burst, etc.) and the engineering performance is jeopardized.  This signifies the end of 

the so-called “service life” of the geomembrane. 

 Although quite arbitrary, the limit of service life of polymeric materials is often selected 

as a 50% reduction in a specific design property.  This is commonly referred to as the halflife 

time, or simply the “halflife”.  It should be noted that even at halflife, the material still exists and 

can function, albeit at a decreased performance level with a factor-of-safety lower than the initial 

design value. 

2.4  Summary of Lifetime Research-to-Date 

 Stage A, that of antioxidant depletion for HDPE geomembranes as required in the GRI-

GM13 Specification, has been well established by our own research and corroborated by others, 

e.g., Sangram and Rowe (2004).  The GRI data for standard and high pressure Oxidative 

Induction Time (OIT) is given in Table 2.  The values are quite close to one another.  Also, as 

expected, the lifetime is strongly dependent on the service temperature; with the higher the 

temperature the shorter the lifetime. 

 
Table 2 - Lifetime prediction of HDPE (nonexposed) at various field temperatures 

 
In Service 

Temperature 
(°C) 

Stage “A” (years) Stage “B” 
 

(years) 

Stage “C”  
 

(years) 

Total 
Prediction* 

(years) 
Standard 

OIT 
High Press. 

OIT 
Average 

OIT 
20 
25 
30 
35 
40 

200 
135 
95 
65 
45 

215 
144 
98 
67 
47 

208 
140 
97 
66 
46 

30 
25 
20 
15 
10 

208 
100 
49 
25 
13 

446 
265 
166 
106 
69 

*Total = Stage A (average) + Stage B + Stage C 
 
 Stage “B”, that of induction time, has been obtained by comparing 30-year old 

polyethylene water and milk containers (containing no long-term antioxidants) with currently 
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produced containers.  The data shows that degradation is just beginning to occur as evidenced by 

slight changes in break strength and elongation, but not in yield strength and elongation.  The 

lifetime for this stage is also given in Table 2. 

 Stage “C”, the time for 50% change of mechanical properties is given in Table 2 as well.  

The data depends on the activation energy, or slope of the Arrhenius curve, which is very 

sensitive to material and experimental techniques.  The data is from Gedde, et al. (1994) which is 

typical of the HDPE resin used for gas pipelines and is similar to Martin and Gardner (1983). 

 Summarizing Stages A, B, and C, it is seen in Table 2 that the halflife of covered HDPE 

geomembranes (formulated according to the current GRI-GM13 Specification) is estimated to be 

449-years at 20°C.  This, of course, brings into question the actual temperature for a covered 

geomembrane such as beneath a solid waste landfill.  Figure 4 presents multiple thermocouple 

monitoring data of a municipal waste landfill liner in Pennsylvania for over 10-years, Koerner 

and Koerner (2005).  Note that for 6-years the temperature was approximately 20°C.  At that 

time and for the subsequent 4-years the temperature increased to approximately 30°C.  Thus, the 

halflife of this geomembrane is predicted to be from 166 to 446 years within this temperature 

range.  The site is still being monitored, see Koerner and Koerner (2005). 
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Figure 4.  Long-term monitoring of an HDPE liner beneath a municipal solid waste landfill in 

Pennsylvania. 
 

2.5  Lifetime of Other Covered Geomembranes 

 By virtue of its widespread use as liners for solid waste landfills, HDPE is by far the 

widest studied type of geomembrane.  Note that in most countries (other than the U.S.), HDPE is 

the required geomembrane type for solid waste containment.  Some commentary on other-than 

HDPE geomembranes (recall Table 1) follows: 

2.5.1 Linear Low Density Polyethylene (LLDPE) geomembranes 

 The nature of the LLDPE resin and its formulation is very similar to HDPE.  The 

fundamental difference is that LLDPE is a lower density, hence lower crystallinity, than HDPE; 

e.g., 10% versus 50%.  This has the effect of allowing oxygen to diffuse into the polymer 

structure quicker, and likely decreases Stages A and C.  How much is uncertain since no data is 

available, but it is felt that the lifetime of LLDPE will be somewhat reduced with respect to 

HDPE. 
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2.5.2  Plasticizer migration in PVC geomembranes 

Since PVC geomembranes necessarily have plasticizers in their formulations so as to 

provide flexibility, the migration behavior must be addressed for this material.  In PVC the 

plasticizer bonds to the resin and the strength of this bonding versus liquid-to-resin bonding is 

significant.  One of the key parameters of a stable long-lasting plasticizer is its molecular weight.  

The higher the molecular weight of the plasticizer in a PVC formulation, the more durable will 

be the material.  Conversely, low molecular weight plasticizers have resulted in field failures 

even under covered conditions.  See Miller, et al. (1991), Hammon, et al. (1993), and Giroud and 

Tisinger (1994) for more detail in this regard.  At present there is a considerable difference (and 

cost) between PVC geomembranes made in North America versus Europe.  This will be apparent 

in the exposed study of durability in the second part of this White Paper. 

2.5.3  Crosslinking in EPDM and CSPE geomembrnaes 

The EPDM geomembranes mentioned in Table 1 are crosslinked thermoset materials.  

The oxidation degradation of EPDM takes place in either ethylene or propylene fraction of the 

co-polymer via free radical reactions, as expressed in Figure 5, which are described similarly by 

Equations (4) to (6). 

EPDM ROOH OH + RO

+ EPDM

R + ROH + H2OROO
O2

+ EPDM

EPDM ROOH OH + RO

+ EPDM

R + ROH + H2OROO
O2

+ EPDM

 

Figure 5.  Oxidative degradation of crosslinked EPDM geomembranes, (Wang and Qu, 2003). 

For CSPE geomembranes, the degradation mechanism is dehydrochlorination by losing chlorine 

and generating carbon-carbon double bonds in the main polymer chain, as shown in Figure 6.  
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The carbon-carbon double bonds become the preferred sites for further thermodegradation or 

cross-linking in the polymer, leading to eventual brittleness of the geomembrane. 

CH2  CH2  CH2  CH  CH2  CH[( )x
Cl

] y[ ]n

SO2Cl

CH2  CH2  CH = CH  CH2  CH[( )x ]y[ ]n
SO2Cl

+ HCl

hCH2  CH2  CH2  CH  CH2  CH[( )x
Cl

] y[ ]n

SO2Cl

CH2  CH2  CH2  CH  CH2  CH[( )x
Cl

] y[ ]n

SO2Cl

CH2  CH2  CH = CH  CH2  CH[( )x ]y[ ]n
SO2Cl

+ HCl

h

 

Figure 6. Dechlorination degradation of crosslinked CSPE geomembranes (Chailan, et al., 1995). 

Neither EPDM nor CSPE has had a focused laboratory study of the type described for HDPE 

reported in the open literature.  Most of lifetime data for these geomembranes is antidotal by 

virtue of actual field performance.  Under covered conditions, as being considered in this section, 

there have been no reported failures by either of these thermoset polymers to our knowledge. 

 

3.0  Lifetime Prediction:  Exposed Conditions 

 Lifetime prediction of exposed geomembranes have taken two very different pathways; 

(i) prediction from anecdotal feedback and field performance, and (ii) from laboratory 

weathering device predictions. 

3.1  Field Performance 

There is a large body of anecdotal information available on field feedback of exposed 

geomembranes.  It comes form two quite different sources, i.e., dams in Europe and flat roofs in 

the USA. 

 Regarding exposed geomembranes in dams in Europe, the original trials were using 2.0 

mm thick polyisobutylene bonded directly to the face of the dam.  There were numerous 

problems encountered as described by Scuero (1990).  Similar experiences followed using PVC 
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geomembranes.  In 1980, a geocomposite was first used at Lago Nero which had a 200 g/m2 

nonwoven geotextile bonded to the PVC geomembrane.  This proved quite successful and led to 

the now-accepted strategy of requiring drainage behind the geomembrane.  In addition to thick 

nonwoven geotextiles, geonets, and geonet composites have been successful.  Currently over 50 

concrete and masonry dams have been rehabilitated in this manner and are proving successful for 

over 30-years of service life.  The particular type of PVC plasticized geomembranes used for 

these dams is proving to be quite durable.  Tests by the dam owners on residual properties show 

only nominal changes in properties, Cazzuffi (1998).  As indicated in Miller, et al. (1991) and 

Hammond, et al. (1993), however, different PVC materials and formulations result in very 

different behavior; the choice of plasticizer and the material’s thickness both being of paramount 

importance.  An excellent overview of field performance is recently available in which 250 dams 

which have been waterproofed by geomembranes is available from ICOLD (2010). 

 Regarding exposed geomembranes in flat roofs, past practice in the USA is almost all 

with EPDM and CSPE and, more recently, with fPP.  Manufacturers of these geomembranes 

regularly warranty their products for 20-years and such warrants appear to be justified.  EPDM 

and CSPE, being thermoset or elastomeric polymers, can be used in dams without the necessity 

of having seams by using vertical attachments spaced at 2 to 4 m centers, see Scuero and 

Vaschetti (1996).  Conversely, fPP can be seamed by a number of thermal fusion methods.  All 

of these geomembrane types have good conformability to rough substrates as is typical of 

concrete and masonry dam rehabilitation.  It appears as though experiences (both positive and 

negative) with geomembranes in flat roofs should be transferred to all types of waterproofing in 

civil engineering applications. 
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3.2  Laboratory Weatherometer Predictions 

 For an accelerated simulation of direct ultraviolet light, high temperature, and moisture 

using a laboratory weatherometer one usually considers a worst-case situation which is the solar 

maximum condition.  This condition consists of global, noon sunlight, on the summer solstice, at 

normal incidence.  It should be recognized that the UV-A range is the target spectrum for a 

laboratory device to simulate the naturally occurring phenomenon, see Hsuan and Koerner 

(1993), and Suits and Hsuan (2001). 

 The Xenon Arc weathering device (ASTM D4355) was introduced in Germany in 1954.  

There are two important features; the type of filters and the irradiance settings.  Using a quartz 

inner and borosilicate outer filter (quartz/boro) results in excessive low frequency wavelength 

degradation.  The more common borosilicate inner and outer filters (boro/boro) shows a good 

correlation with solar maximum conditions, although there is an excess of energy below 300 nm 

wavelength.  Irradiance settings are important adjustments in shifting the response although they 

do not eliminate the portion of the spectrum below 300 nm frequency.  Nevertheless, the Xenon 

Arc device is commonly used method for exposed lifetime prediction of all types of 

geosynthetics. 

 UV Fluorescent devices (ASTM D7238) are an alternative type of accelerated laboratory 

test device which became available in the early 1970’s.  They reproduce the ultraviolet portion of 

the sunlight spectrum but not the full spectrum as in Xenon Arc weatherometers.  Earlier FS-40 

and UVB-313 lamps give reasonable short wavelength output in comparison to solar maximum.  

The UVA-340 lamp was introduced in 1987 and its response is seen to reproduce ultraviolet light 

quite well.  This device (as well as other types of weatherometers) can handle elevated 

temperature and programmed moisture on the test specimens. 
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 Research at the Geosynthetic Institute (GSI) has actively pursued both Xenon and UV 

Fluorescent devices on a wide range of geomembranes.  Table 3 gives the geomembranes that 

were incubated and the number of hours of exposure as of 12 July 2005. 

 
Table 5 - Details of the GSI laboratory exposed weatherometer study on various types of  

geomembranes 
 

Geomembrane 
Type 

Thickness 
(mm) 

UV Fluorescent 
Exposure* 

Xenon 
Exposure*

Comment 

1. HDPE (GM13) 
2. LLDPE (GM17) 
3. PVC (No. Amer.) 
4. PVC (Europe) 
5. fPP (BuRec) 
6. fPP-R (Texas) 
7. fPP (No. Amer.) 

1.50 
1.00 
0.75 
2.50 
1.00 
0.91 
1.00 

8000 hrs. 
8000 
8000 
7500 
2745** 
100 
7500 

6600 hrs. 
6600  
6600 
6600 
4416** 
100 
6600 

Basis of GRI-GM13 Spec 
Basis of GRI-GM-17 Spec 
Low Mol. Wt. Plasticizer 
High Mol. Wt.  Plasticizer 
Field Failure at 26 mos. 
Field Failure at 8 years 
Expected Good Performance 

*As of 12 July 2005 exposure is ongoing  
**Light time to reach halflife of break and elongation 

3.3  Laboratory Weatherometer Acceleration Factors 

 The key to validation of any laboratory study is to correlate results to actual field 

performance.  For the nonexposed geomembranes of Section 2 such correlations will take 

hundreds of years for properly formulated products.  For the exposed geomembranes of Section 

3, however, the lifetimes are significantly shorter and such correlations are possible.  In 

particular, Geomembrane #5 (flexible polypropylene) of Table 3 was an admittedly poor 

geomembrane formulation which failed in 26 months of exposure at El Paso, Texas, USA.  The 

reporting of this failure is available in the literature, Comer, et al. (1998).  Note that for both UV 

Fluorescent and Xenon Arc laboratory incubation of this material, failure (halflife to 50% 

reduction in strength and elongation) occurred at 2745 and 4416 hours, respectively.  The 

comparative analysis of laboratory and field for this case history allows for the obtaining of 

acceleration factors for the two incubation devices. 



-16- 
 

 3.3.1 Comparison between field and UV Fluorescent weathering 

 The light source used in the UV fluorescent weathering device is UVA with wavelengths 

from 295-400 nm.  In addition, the intensity of the radiation is controlled by the Solar Eye 

irradiance control system.  The UV energy output throughout the test is 68.25 W/m2.  

The time of exposure to reach 50% elongation at break was as follows: 

  = 2745 hr. of light 
   = 9,882,000 seconds 

Total energy in MJ/m2  = 68.25 W/m2  9,882,000 
                                      = 674.4 MJ/m2 

The field site was located at El Paso, Texas.  The UVA radiation energy (295-400 nm) at this site 

is estimated based on data collected by the South Florida Testing Lab in Arizona (which is a 

similar atmospheric location).  For 26 months of exposure, the accumulated UV radiation energy 

is 724 MJ/m2 which is very close to that generated from the UV fluorescent weatherometer.  

Therefore, direct comparison of the exposure time between field and UV fluorescent is 

acceptable.    

Field time vs. Fluorescent UV light time:  Thus, the acceleration factor is 6.8. 
= 26 Months  = 3.8 Months   
 
 3.3.2 Comparison between field and Xenon Arc weathering 

 The light source of the Xenon Arc weathering device simulates almost the entire sunlight 

spectrum from 250 to 800 nm.  Depending of the age of the light source and filter, the solar 

energy ranges from 340.2 to 695.4 W/m2, with the average value being 517.8 W/m2. 

The time of exposure to reach 50% elongation at break 

  = 4416 hr. of light 
  = 15,897,600 seconds 

Total energy in MJ/m2  = 517.8 W/m2  15,897,600 
                                      = 8232 MJ/m2 
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The solar energy in the field is again estimated based on data collected by the South Florida 

Testing Lab in Arizona.  For 26 months of exposure, the accumulated solar energy (295-800 nm) 

is 15,800 MJ/m2, which is much higher than that from the UV Fluorescent device.  Therefore, 

direct comparison of halflives obtained from the field and Xenon Arc device is not anticipated to 

be very accurate.  However, for illustration purposes the acceleration factor based on Xenon Arc 

device would be as follows:   

Field vs. Xenon Arc    : Thus, the acceleration factor is 4.3. 
= 26 Months  = 6.1 Months  

 The resulting conclusion of this comparison of weathering devices is that the UV 

Fluorescent device is certainly reasonable to use for long-term incubations.  When considering 

the low cost of the device, its low maintenance, its inexpensive bulbs, and ease of repair it (the 

UV Fluorescent device) will be used exclusively by GSI for long-term incubation studies. 

 3.3.3  Update of exposed lifetime predictions 

 There are presently (2011) four field failures of flexible polypropylene geomembranes and 

using unexposed archived samples from these sites their responses in laboratory UV Fluorescent 

devices per ASTM D7328 at 70°C are shown in Figure 5.  From this information we deduce that 

the average correlation factor is approximately 1200 light hours ~ one-year in a hot climate.  

This value will be used accordingly for other geomembranes. 
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                   (a) Two Sites in West Texas                                                                                (b) Two Sites in So. Calif. 

Lab-to-Field Correlation Factors 
(ASTM D7238 @ 70°C) 

 

Method Thickness 
(mm) 

Field 
(yrs.) 

Location Lab 
(lt. hr.) 

Factor 
(lt. hrs./1.0 yr.) 

fPP-1 
fPP-R1 
fPP-R2 
fPP-R3 

1.00 
1.14 
0.91 
0.91 

~ 2 
~ 8 
~ 2 
~ 8  

W. Texas 
W. Texas 
So. Calif. 
So. Calif. 

 1800 
 8200 
 2500 
 11200 

 900 
 1025 
 1250 
    1400  
 1140* 

                            *Use 1200 lt. hr. = 1.0 year in hot climates 

 

Figure 5.  Four field failures of fPP and fPP-R exposed geomembranes.
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 Exposure of a number of different types of geomembranes in laboratory UV Fluorescent 

devices per ASTM D7238 at 70°C has been ongoing for the six years (between 2005 and 2011) 

since this White Paper was first released.  Included are the following geomembranes: 

 Two black 1.0 mm (4.0 mil) unreinforced flexible polypropylene geomembranes 

formulated per GRI-GM18 Specification; see Figure 6a. 

 Two black unreinforced polyethylene geomembranes, one 1.5 mm (60 mil) high density 

per GRI-GM13 Specification and the other 1.0 mm (40 mil) linear low density per GRI-

GM17 Specification; see Figure 6b. 

 One 1.0 (40 mil) black ethylene polypropylene diene terpolymer geomembrane per GRI-

GM21 Specification; see Figure 6c. 

 Two polyvinyl chloride geomembranes, one black 1.0 mm (40 mil) formulated in North 

America and the other grey 1.5 mm (60 mil) formulated in Europe; see Figure 6d. 
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Figure 6a. Flexible polyethylene (fPP) geomembrane behavior.

0

20

40

60

80

100

120

140

0 10000 20000 30000 40000 50000

Light Hours

Pe
rc

en
t E

lo
ng

at
io

n 
R

et
ai

ne
d

fPP-2 per GM 18 at 70C

fPP-3 per GM 18 at 70C



-20- 
 

0

20

40

60

80

100

120

0 10000 20000 30000 40000 50000

Light Hours

P
er

ce
nt

 S
tr

en
gt

h 
Re

ta
in

ed

HDPE (1.50 mm per
GM13) at 70C

LLDPE-1(1.00mm per
GM17) at 70C

 

 

0

20

40

60

80

100

120

0 10000 20000 30000 40000 50000

Light Hours

Pe
rc

en
t E

lo
ng

at
io

n 
Re

ta
in

ed

HDPE (1.50 mm per
GM13) at 70C

LLDPE-1(1.00mm per
GM17) at 70C

 

Figure 6b.  Polyethylene (HDPE and LLDPE) geomembrane behavior. 
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Figure 6c.  Ethylene polypropylene diene terpolymer (EPDM) geomembrane. 
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Figure 6d.  Polyvinyl chloride (PVC) geomembranes. 
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From the response curves of the various geomembranes shown in Figure 6a-d, the 50% reduction 

value in strength or elongation (usually elongation) was taken as being the “halflife”.  This value 

is customarily used by the polymer industry as being the materials lifetime prediction value.  We 

have done likewise to develop Table 6 which is our predicted values for the designated exposed 

geomembrane lifetimes to date. 

Table 6 – Exposed lifetime prediction results of selected geomembranes to date 

Type Specification Prediction Lifetime in a Dry and Arid Climate 

HDPE GRI-GM13 > 36 years (ongoing) 

LLDPE GRI-GM17 ~ 36 years (halflife) 

EPDM GRI-GM21 > 27 years (ongoing) 

fPP-2 GRI-GM18 ~ 30 years (halflife) 

fPP-3 GRI-GM18 > 27 years (ongoing) 

PVC-N.A. (see FGI) ~ 18 years (halflife) 

PVC-Eur. proprietary > 32 years (ongoing) 

 

4.0  Conclusions and Recommendations 

 This White Paper is bifurcated into two very different parts; covered (or buried) lifetime 

prediction of HDPE geomembranes and exposed (to the atmosphere) lifetime prediction of a 

number of geomembrane types.  In the covered geomembrane study we chose the geomembrane 

type which has had the majority of usage, that being HDPE as typically used in waste 

containment applications.  Invariably whether used in landfill liner or cover applications the 

geomembrane is covered.  After ten-years of research Table 2 (repeated here) was developed 

which is the conclusion of the covered geomembrane research program.  Here it is seen that 

HDPE decreases its predicted lifetime (as measured by its halflife) from 446-years at 20C, to 

69-years at 40C.  Other geomembrane types (LLDPE, fPP, EPDM and PVC) have had 
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essentially no focused effort on their covered lifetime prediction of the type described herein.  

That said, all are candidates for additional research in this regard. 

Table 2 - Lifetime prediction of HDPE (nonexposed) at various field temperatures 
 

In Service 
Temperature 

(°C) 

Stage “A” (years) Stage “B” 
 

(years) 

Stage “C”  
 

(years) 

Total 
Prediction* 

(years) 
Standard 

OIT 
High Press. 

OIT 
Average 

OIT 
20 
25 
30 
35 
40 

200 
135 
95 
65 
45 

215 
144 
98 
67 
47 

208 
140 
97 
66 
46 

30 
25 
20 
15 
10 

208 
100 
49 
25 
13 

446 
265 
166 
106 
69 

*Total = Stage A (average) + Stage B + Stage C 
 

 Exposed geomembrane lifetime was addressed from the perspective of field performance 

which is very unequivocal.  Experience in Europe, mainly with relatively thick PVC containing 

high molecular weight plasticizers, has given 25-years of service and the geomembranes are still 

in use.  Experience in the USA with exposed geomembranes on flat roofs, mainly with EPDM 

and CSPE, has given 20+-years of service.  The newest geomembrane type in such applications is 

fPP which currently carries similar warranties.     

 Rather than using the intricate laboratory setups of Figure 1 which are necessary for 

covered geomembranes, exposed geomembrane lifetime can be addressed by using accelerating 

laboratory weathering devices.  Here it was shown that the UV fluorescent device (per ASTM 

D7238 settings) versus the Xenon Arc device (per ASTM D 4355) is equally if not slightly more 

intense in its degradation capabilities.  As a result, all further incubation has been using the UV 

fluorescent devices per D7238 at 70°C. 

 Archived flexible polypropylene geomembranes at four field failure sites resulted in a 

correlation factor of 1200 light hours equaling one-year performance in a hot climate.  Using this 
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value on the incubation behavior of seven commonly used geomembranes has resulted in the 

following conclusions (recall Figure 6 and Table 6); 

 HDPE geomembranes (per GRI-GM13) are predicted to have lifetimes greater than 36-

years; testing is ongoing. 

 LLDPE geomembranes (per GRI-GM17) are predicted to have lifetimes of approximately 

36-years. 

 EPDM geomembranes (per GRI-GM21) are predicted to have lifetimes of greater than 

27-years; testing is ongoing. 

 fPP geomembranes (per GRI-GM18) are predicted to have lifetimes of approximately 30-

years. 

 PVC geomembranes are very dependent on their plascitizer types and amounts, and 

probably thicknesses as well.  The North American formulation has a lifetime of 

approximately 18-years, while the European formulation is still ongoing after 32-years. 

Regarding continued and future recommendations with respect to lifetime prediction, GSI is 

currently providing the following: 

(i) Continuing the exposed lifetime incubations of HDPE, EPDM and PVC (European) 

geomembranes at 70°C. 

(ii) Beginning the exposed lifetime incubations of HDPE, LLDPE, fPP, EPDM and both 

PVC’s at 60°C and 80°C incubations. 

(iii)With data from these three incubation temperatures (60, 70 and 80°C), time-temperature-

superposition plots followed by Arrhenius modeling will eventually provide information 

such as Table 2 for covered geomembranes.  This is our ultimate goal. 
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(iv) Parallel lifetime studies are ongoing at GSI for four types of geogrids and three types of 

turf reinforcement mats at 60, 70 and 80°C. 

(v) GSI does not plan to duplicate the covered geomembrane study to other than the HDPE 

provided herein.  In this regard, the time and expense that would be necessary is 

prohibitive. 

(vi) The above said, GSI is always interested in field lifetime behavior of geomembranes (and 

other geosynthetics as well) whether covered or exposed. 
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