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 “Cold Temperature and Free-Thaw Cycling Behavior of Geomembranes and Their 

Seams” 

 

 Introduction 

 It is common knowledge that materials in general, and polymeric materials in particular, 

will somewhat soften and increase in flexibility under high temperatures and will conversely 

somewhat harden and decrease in flexibility under cold temperatures.  While there are indeed 

circumstances where high ambient temperatures are important, this white paper focuses entirely 

on cold ambient temperatures.  Even further, it addresses cold temperature behavior of the 

various geomembranes by themselves and, most importantly, the freeze-thaw cycling behavior of 

a large number of geomembrane sheets and their seams. 

 The stimulus for writing the white paper is the myriad questions that regularly come to 

GSI as to the potential negative effects on the tensile strength of geomembranes and their seams 

under cold temperature and cyclic freeze-thaw field conditions.  As will be seen, the primary 

source for the information to be presented herein is a joint U.S. EPA/U.S. BuRec study 

conducted by Alice Comer and Grace Hsuan in 1996.  Other companion technical information 

will also be presented.   

Cold Temperature Behavior of Geomembranes 

 A report by Thornton and Blackall (1976) appears to be the first in describing Canadian 

experiences with geomembranes in cold regions.  Subsequently, Rollin, et al. (1984) conducted a 

laboratory study on 21 types of geomembranes at temperatures down to - 35°C.  They found 

increasing tensile strength with decreasing temperature.  Richards, et al. (1985) did similar 

studies which also resulted in an increase in strength and a decrease in elongation with 

decreasing temperatures.  They evaluated PVC, CPE and HDPE geomembranes and presented 

the stress-versus-strain curves at +23°C, -7°C and -26°C temperatures; see Figures 1a, 1b, and  



 
(a) Tensile test results for PVC geomembranes 

 
(b) Tensile test results for CPE geomembranes 

 
(c) Tensile test results for HDPE geomembranes 

Figure 1 – Stress-versus-strain behavior of three geomembrane types under progressively colder 

testing environments, Richards, et al. (1985)  



1c.  Here one can readily observe how the sets of curves transition from relatively ductile 

behavior at +23°C, to relatively brittle behavior at  -26°C, with the intermediate behavior at -

7°C.  There are a few outliers, but the trends are undeniable.   This general behavior was 

confirmed by Peggs, et al. (1990) and Giroud, et al. (1993), the latter working with both smooth 

and textured HDPE geomembranes. 

 While this type of thermal behavior is of interest, such information for a specific type of 

geomembrane must be obtained by performing or commissioning individual tests so as to obtain 

actual design information.   Such individual testing is required due to the uniqueness of each 

polymer type and its specific formulation.  Additives such as plasticizers, fillers, antioxidants, 

carbon black, colorants, etc., can influence the results to varying degrees.  Even the resins 

themselves have behavioral differences at different temperatures.  For example, the glass 

transition temperature of propylene is -7°C, below which the polymer is glassy and above which 

it is characterized as rubbery.  In such a case the tensile properties are greatly influenced, as well 

as the material’s creep and stress relaxation behavior. 

 There are other aspects of cold temperatures on geomembranes that go beyond the scope 

of this white paper.  In particular are cases of impact shuttering failures in cold climates and 

installation concerns such as frozen subgrade, bridging, snow and ice removal and worker 

discomfort, Burns, et al. (1990). 

Freeze-Thaw Cycling of Geomembrane Sheets and Seams 

 Budiman (1994) reported on both cold temperature behavior but also appears to be the 

first to include freeze-thaw cycling for up to 150 repetitions.  He focused entirely on HDPE sheet 

(of different thicknesses) but not on seams.  There was no degradation observed during his tests 

but he suggested that more cycles would be appropriate.  At approximately the same time a much 



larger freeze-thaw study was ongoing.  The final report by Comer and Hsuan was released by the 

U.S. Bureau of Reclamation in 1996.  Related papers leading up to this final report are Hsuan, et 

al. (1993), Comer, et al. (1995), and Hsuan, et al. (1997).  Their combined study involved 19 

different geomembrane sheet materials and 31 different seam types.  Furthermore, seven 

different resin types were evaluated.  The resin types were the following: 

 polyvinyl chloride (PVC) 

 linear low density polyethylene (LLDPE) 

 high density polyethylene (HDPE) 

 flexible polypropylene (fPP) 

 chlorosulfonated polyethylene (CSPE) 

 fully crosslinked elastomeric alloy (FCEA) 

All except FCEA are currently available, however, changes in additives and formulations have 

occurred and will likely to do so in the future.  The entire study was conducted in four discrete 

parts although the fourth part was focused on induced tensile stress and stress relaxation and is 

not the specific purpose of this white paper.  See Table 1 for the relevant three parts of their 

study. 

Table 1 – Experimental Design of Different Parts of Comer and Hsuan (1996) Study 

Part Cyclic Temperature 

Range 

Maximum 

Cycles 

Incubation 

Condition 

Tensile Test 

Temperature 

I +20°C to -20°C 200 relaxed +20°C 

II +20°C to -20°C 200 relaxed -20°C 

III +30°C to -20°C 500 constrained +20°C 

 

 Part I consisted of 19 sheet materials and 27 seams.  They underwent freeze-thaw cycles 

at +20°C for 8 hours and then -20°C for 16 hours.  Tensile tests were then conducted at +20°C 

after 1, 5, 10, 20 50, 100 and 200 cycles. 



 Part II consisted of 6 sheet materials and 13 seams.  They also underwent freeze-thaw 

cycling at +20°C for 8 hours and then -20°C for 16 hours.  Different in this regard was that 

tensile tests were then conducted at -20°C after 1, 5, 10, 20, 50, 100 and 200 cycles.  The -20°C 

tests were conducted in an environmental chamber (both specimens and their grips) cooled by 

liquid nitrogen and set at -20°C temperature. 

 Part III consisted of the same set of 19 sheet materials and 27 seams as in Part I but were 

now tensioned at a constant strain during the freeze-thaw cycling.  The rack used for the 

tensioning is shown in Figure 2a and the assembly within the environmental chamber is shown in 

Figure 2b.    After the targeted number of freeze-thaw cycles at +20°C for 8 hours and -20°C for 

16 hours, specimens were removed and tested at +20°C after 1, 10, 50, 100, 200 and 500 cycles. 

 

(a) Method of applying tensile load to test specimens in Part III tests 



 

(b) Geomembrane racks in holding frame used in Part III series 

Figure 2 – Method used for tensioning samples during incubation; Comer and Hsuan (1996) 

 

Rather than showing the graphic results of the above freeze-thaw cycling study (it is available in 

full in the Comer and Hsuan report by the Bureau of Reclamation and the related papers by these 

authors) only the concluding comments will be reproduced here.  They follow verbatim from the 

report. 

Part I – Results on 200 Freeze-Thaw Cycles Tested at +20°C 

 Tensile tests on geomembrane sheets:  “The results show no change in either the peak 

strength or peak elongation of any of the tested materials”. 

 Shear tests on the geomembrane seams: “The results show no change in shear 

strength of any of the tested seam materials”. 

 Peel tests on the geomembrane seams:  “The results show no change in peel strength 

of any of the tested seam materials. 

 

 



Part II – Results on 200 Freeze-Thaw Cycles Tested at -20°C 

 Tensile tests on geomembrane sheets:  “The results show no change in either the peak 

strength or peak elongation of any of the tested materials”. 

 Shear tests on the geomembrane seams: “The results show no change in shear 

strength of any of the tested seam materials”. 

 Peel tests on the geomembrane seams:  “The results show no change in peel strength 

of any of the tested seam materials. 

Part III – Results on 500 Freeze-Thaw Cycles Tested at +20°C in a Constrained Condition 

 Tensile tests on geomembrane sheets:  “The results show no change in either the peak 

strength or peak elongation of any of the tested materials”. 

 Shear tests on the geomembrane seams: “The results show no change in shear 

strength of any of the tested seam materials”. 

 Peel tests on the geomembrane seams:  “The results show no change in peel strength 

of any of the tested seam materials. 

Conclusion and Recommendations 

 This two-part white paper focused initially on the cold temperature tensile behavior of the 

stress- versus-strain curves of several different types of geomembranes.  As expected, the colder 

the temperature the more brittle, hence less ductile, were the response curves.  Geomembranes 

made from PVC, CPE and HDPE were illustrated in this regard.  The recommendation reached 

for this part of the white paper is that if a formulation-specific geomembrane under site-specific 

conditions is to be evaluated for its stress-versus-strain response, actual tests must be 

commissioned accordingly.  The literature can only give general trends in this regard. 



 The second (and more important) part of this white paper focused entirely on freeze-thaw 

behavior of geomembranes and their different seam types.  The U.S. Bureau of Reclamation  

report is extremely revealing in this regard.  The conclusion that the authors reached is that there 

is simply “no change” in tensile behavior of geomembrane sheets or their seams after freeze-

thaw cycling.  It is felt that this conclusion in the context of their study is so impressive that it 

has essentially “closed the door” to further research on this specific topic.  The essential question 

often raised in this regard, i.e., “will freeze-thaw conditions affect geomembrane sheets or their 

seam behavior,” is answered with a resounding “NO”. 
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